A Characterization of a Local Vector Valued Bollobás Theorem

نویسندگان

چکیده

Abstract In this paper, we are interested in giving two characterizations for the so-called property L $$_{o,o}$$ o , , a local vector valued Bollobás type theorem. We say that ( X Y ) has whenever given $$\varepsilon > 0$$ ε > 0 and an operador $$T: \rightarrow Y$$ T : X → Y there is $$\eta = \eta (\varepsilon T)$$ η = ( ) such if x satisfies $$\Vert T(x)\Vert 1 - $$ ‖ x 1 - then exists $$x_0 \in S_X$$ ∈ S \approx x$$ ≈ T itself attains its norm at $$x_0$$ . This can be seen as strong (although local) theorem operators. prove pair compact operators only so does $$(X, \mathbb {K})$$ K linear functionals. generalizes once some results due to D. Sain J. Talponen. Moreover, present complete characterization when $$(X \widehat{\otimes }_\pi Y, ⊗ ^ π functionals under strict convexity or Kadec–Klee assumptions one of spaces. As consequence, generalize literature related strongly subdifferentiability projective tensor product show $$(L_p(\mu \times L_q(\nu ); L p μ × q ν ; cannot satisfy bilinear forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Vector-valued Random Ergodic Theorem

2. Theorem. Let £ be a reflexive B-space and let (S, 2, m) be a a-finite measure space. Let there be defined on S a strongly measurable function Ts with values in the B-space B(H) of bounded linear operators on H. Suppose that || 7\|| ^=1 for all sES. Let h be a measure-preserving transformation (m.p.t.) in (S, 2, m). Then for each XELi(S, £) there is an XELi(S, X) such that limn<„ «_1E"=i T*Th...

متن کامل

A Characterization of Quasiconvex Vector-valued Functions

The aim of this paper is to characterize in terms of scalar quasiconvexity the vector-valued functions which are K-quasiconvex with respect to a closed convex cone K in a Banach space. Our main result extends a wellknown characterization of K-quasiconvexity by means of extreme directions of the polar cone of K, obtained by Dinh The Luc in the particular case when K is a polyhedral cone generate...

متن کامل

The Local Limit Theorem: A Historical Perspective

The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...

متن کامل

Vector ultrametric spaces and a fixed point theorem for correspondences

In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Mathematics

سال: 2021

ISSN: ['1420-9012', '1422-6383']

DOI: https://doi.org/10.1007/s00025-021-01485-4